
Educational Research Journal 1996, Vol. 11, No. 1, pp. 24-31

Log ex-
An Intelligent Computer Tutor in Logarithms

Fong-lok Lee
The Chinese University of Hong Kong

The use of computer in education started more than thirty years ago. In traditional computer assisted
instruction systems, all responses have to be preplanned and implemented at the designing stage. The
system builders must prespecify all available routes through the space of teaching possibilities. Every test,
every decision, every branch leading to some remedial material and every exposition must be written in
advance (Goodyear, 1991). When considering the number of decision points with their corresponding
responses, the possible number of combinations, even for small tutoring systems, will be enormous. This
prevents computer assisted systems from being used in larger subject areas. Recently, with the aid of
knowledge representation techniques originating from artificial intelligence, human knowledge can be
incorporated into computer systems. Based on the knowledge incorporated, computer systems can now
make judgments on students' responses and decide on suitable responses to be made in real time. There is no
need to pre-install all the possible routes and decision points. The computer system is thus smaller in a sense
that less memory space is required on the hardware. Besides, the responses generated in real time can be
more flexible and more adapted to students' needs. Logex is an example of such systems, called intelligent
tutoring systems, which are designed to help students in simplifying logarithmic expressions by working
through the simplification process with the students. This article describes its principles, structure and the
ways by which it helps students.

•••m~••~s~~+~~-~o•m•••M•**•~•~.~~--~··~~~~•&•·
W&M~~-Mm~•.ua~m~~~~~--~*-~om•m~.~T~-•m*.~R~-*~--~
-~~*~•=~$-~oM~•~•~•~•~•M~•~••*~.~mmm•~~*•~•••Mfi¥* •. #~-~~~~Molli~~~~AifiM~¥&,B-~AM~~-fiffi,~zm•~··*·~o~~~
~-~~•.••*•~~-·~~&•.~~~•~••.~~mffi•t~M~m~o~~~•*•~•~lli
~Atieillil1ill~~~WJ~~s~rnmt¥-, M~~1'-il}ff.l,fiM~•n~il1illflJJfi¥*• (intelligent tutoring system) o fiM~•n~

*•~~~•~m•M~~•&m&•~•~.•~~-·~·~~~-~.~-~~~d~~~•••~~•
JJ~ o :t>:Jt~n1l'"#.B-11IDmt>Rs9fiM~•JJ~$lllM~J:¥*• Logex, ~~9:tft~~kl~iflJJ¥~~J¥~ o

The use of computers in education, parti­
cularly in instruction, has been in existence for more
than thirty years. The goal of computer-assisted
instruction (CAl) is individualized instruction so that
each student can be instructed differently according
to his or her level of expertise as judged by the
computer. In earlier approaches to such instruction
programs using conventional programming tech­
niques, the system builders must prespecify all
available routes through the space of teaching
possibilities. Every test, every decision, every branch
to some remedial material and every exposition must
be written in advance (Goodyear, 1991). This works
fine for simple programs, but whe-n instructions
become more complex, a combinatorial problem
arises: the number of decision points, branches and
remedial materials would be so large that either it

Correspondence concerning this article should be addressed to
Fong-lok Lee, Department of Educational Psychology,
Faculty of Education, the Chinese University of Hong Kong.

24

would be difficult to input them into any machine or
the manpower involved would be tremendous.

A second approach to the problem is the
designing of systems called Intelligent Tutoring
Systems (ITS) or Intelligent Computer Assisted
Instruction Systems(ICAI). The word 'intelligent'
is used to denote that this kind of work, when done
by a human, is considered as intelligent (Self,
1988). ITS takes a completely different approach
from CAl by simulating what a human tutor does
during the instruction. When we observe what a
human tutor does in a tutoring process, we can see
that he does not necessarily use some prescribed
sequence of rules. Rather, his procedures are
either spontaneous reactions to his student's needs
or are based on strategies which have proved
effective. All these are based on the student's
knowledge as inferred from his responses, as well
as the tutor's subject and pedagogical knowledge.
Human tutors do not always possess a distinct set
of instructions for each situation. What they need

AN INTELLIGENT COMPUTER TUTOR IN LOGARITHMS 25

are the know ledge and the inference mechanisms
that can generate the decision in real time. As
pointed out by Self (1988), ICAI differs from CAl
primarily in its focus on the representation of
knowledge of the subject matter and of pedagogi­
cal knowledge.

As only the knowledge in the form of rules
but not the routes and decision points are to be
stored, simulating the human tutoring process has
a further advantage of reducing the memory space
required in the hardware. Hence, ITS can be used
in more complex subject domains when compared
with the traditional CAL

Knowledge in ITS

To store knowledge into ITSs, several
techniques originally from the field of artificial
intelligence can be employed. This includes
semantic net or frames (Woolf, 1987), production
systems (Anderson, 1992; Anderson, Boyle, &
Yost, 1985) and skill graph (Mao & Lin, 1992).
Different types of knowledge are involved in an
ITS. Examples are knowledge of the student
(Baffes, 1996); knowledge of the domain
(Giangrandi & Tasso, 1995) and knowledge of
how to teach (Clancey, 1982; Marcke, 1992). It is
commonly agreed that four sets of knowledge
should be included (Ram bally, 1986; Woolf,
1987; Park, 1991; Garito, 1991) though they may
be named differently. The sets are:

Domain knowledge: knowledge about the
subject domain;
Student model: knowledge about the student;
Tutorial knowledge: knowledge about how to
teach;
Communication knowledge: knowledge
about how to communicate with the learner
through the computer.

Each set of knowledge refers to a different
kind of knowledge that an ITS should have,
though not all such systems would incorporate all
of them. Also, the arrangement of each set of
know ledge in a system may not be the same.
Earlier systems may mix all kinds of knowledge
together, while later systems may put them into
separate modules (Park, 1991). The separation of
knowledge into modules enables easy expansion
of the knowledge base of the system.

What is Logex

Logex is a simple ITS that helps to diagnose

and correct students' errors in doing logarithmic
problems. It is considered simple in the sense that,
for the time being, it works only in a narrow
subject area. However, the design of Logex
enables its easy expansion to larger subject areas
without any structural modification. The only
limitations perceived are the speed and demand on
the hardware used, and most importantly, our
understanding of the problem solving processes of
human beings.

Basically, Log ex is a simulation of a human
tutor's tutoring process. The system does not work
out the whole problem solving process in advance
to obtain some models to act as criteria for the
students' performances. Instead, it uses a "model
tracing" methodology of tutoring (Reiser,
Anderson, & Farrell, 1985). At each stage of the
process, the· system infers the learner's internal
state by matching his output with the problem
state generated by using ideal (correct) and buggy
(incorrect) rules stored in the system. Instructions
will then be given according to this inference.
Ways to obtain the ideal and buggy rules will be
discussed in later sections.

The inference is made possible by two major
components in Logex: a knowledge base and an
inferring mechanism. Just like other ITSs, the
knowledge base of Logex consists of the four
types of know ledge described above. They are
expressed as sets of rules and are obtained through
source materials such as text books and students'
exercises. On the other hand, while the present
system is developed by using the Prolog language,
a common artificial intelligence language, the
inherent inferring ability of this language makes
the inferring mechanism of the present system
possible.

How Logex works

T_he system starts with the computer screen
divided into three parts, named Blackboard,
Notebook and Exercise Book respectively. The
Blackboard acts as a communication medium
between the tutor and the student. It is mainly used
to display problems and messages from the tutor
to the student. The Notebook acts as a student
notebook. In the present case, formulae to be used
for solving the problems are displayed. Lastly, the
Exercise Book is where the student works on the
exercises. Fig. 1 shows the screen arrangement at
the start of the system.

26 F. L. LEE

Question 1 <Blackboard>

Simplify log(6)

<Exercise Book> <Note Book>
log(6) log(2)=0.301

= log(2*3) log(3)=0.4771
= log(2)+log(3) log(7)=0.8451

= 0.301+0.4771 log(10)=1

= 0.7781 log(100)=2

Fig. 1. Screen Arrangement of Log ex

Problems given to the student are pre-arranged
according to their levels of difficulty and presented
to the student sequentially. Problems are presented
both on the Blackboard and the Exercise Book and
the student is then prompted to simplify the given
expression by typing in consecutively new
expressions which he thinks are simpler than the
previous one. Each expression entered represents a
step in the simplification process and will be checked
by the computer. The computer responds by
displaying on the Blackboard the message "correct"
if the student works correctly, or displays hints to
correct the errors. An expression is considered
correct if it satisfies the following conditions:

(1) Correct syntax used: Logex recognises num­
bers, terms and symbols that should appear in
logarithmic expressions such as "log(S)" ,"3",
"100", "+", "-","*","I". Correct combination
of the above will be accepted. Others are treated
as illegal.

(2) A step leading to the correct solution: Logex
includes a set of rules that would lead to the
correct answer to the problem when applied.
Before a new expression is entered into the
system, Logex frrst stores up the old expression,
the one already entered, or the given problem if
no expression is entered. For the new
expression, Logex checks whether it can be
deduced from the old expression by using one
of the correct rules. If yes, the expression will
be accepted. Otherwise, it will be rejected.

Logex does not just reject incorrect inputs.
Instead, based on the knowledge (mal-rules)
incorporated in the system, Logex infers why the
error happened and suggests possible ways to correct
it. Detailed description of how this could be done
wiU be discussed in later sections. However, the
ability to infer is the factor that characterises Logex

as an intelligent tutoring system as opposed to an
ordinary computer assisted learning system.

With the constant checking after each input, the
student is thus kept on the correct path until he
reaches the answer. The next problem will then be
given until all the problems are solved.

Structure of Logex

Logex consists of the knowledge, namely
domain knowledge, student model, tutorial
knowledge and the communication knowledge, that
an ITS would normally possess. These different
types of knowledge are clustered in four modules.
The following briefly describes each module
separately:

The Expert Module

An expert in an area should be familiar with the
domain knowledge in that area. Hence, the expert
module consists of the domain knowledge required
to solve the problems. Two types of rules are
included: the strategic rules and the axiomatic rules.
A strategic rule describes the strategy that a student
would use to tackle a problem, while an axiomatic
rule describes the process involved in the actual
tackling of the problem. The following example
serves to illustrate this difference:

When a student is required to simplify the
expression:

log 6

he or she might immediately respond by trying to
factorize the number "6". However, the actual
factorization of "6" is the use of related axioms
which is quite different from the recognition that "6"
has to be factorized. Hence, there are two processes
involved: the first is the strategic rule which
describes the recognition of the need to factorize
when a certain pattern is seen; and secondly the
axiomatic rule describing the process when used in
related axioms to do the actual factorization. In other
words, a strategic rule describes when to do
something while an axiomatic rule describes how to
something.

According to Lewis, Milson & Anderson
(1987), simply learning how the axioms manipulate
symbols may be easier than learning when to apply
that axiom in service of problem solving. However,
both strategic and axiomatic components of a skill
must both be well learned if the skill is to be applied
successfully in problem solving.

The advantage of separating strategy rules from
axiomatic rules is that the tutor's cognitive load can

AN INTELLIGENT COMPUTER TUTOR IN LOGARITHMS 27

be lightened if he can focus on the student's strategic
decisions at some points and application of
axiomatic knowledge at others separately (Lewis,
Milson & Anderson, 1987). Strategic and axiomatic

rules are thus extracted from mathematics text books
and incorporated into the expert module of Logex.
Table 1 shows some examples of both types of rules
used.

Table 1
Examples of Strategic and Axiomatic Rules Used in Expert Module

Strategic Rules: Rules governing the strategies used.

1 IF a pattern log(X*Y) is observed

2

3

4

6

7

THEN

IF

THEN

IF

THEN

IF

THEN

IF

THEN

IF

THEN

AND the logarithm of the product of X and Y is not available,

set a subgoal to distribute log to (X*Y)

a pattern log(X/Y) is observed

AND the logarithm of the ratio of X to Y is not available,

set a subgoal to distribute log to (XIY)

the expression contains a component in the form log X,

set a sub goal to factorize X.

the expression contains a pattern log(X),

AND the logarithm of X is not available,

set a sub goal to write X as ratio of Y and Z,

where logarithms of Y and Z are available.

the expression is in the form logX+logY, etc.,

set a subgoal to fmd the logs and then sum them up.

the expression is in the form A+B, where A, Bare real numbers

set a subgoal to add them up.

Axiomatic Rules: Rules related to mathematical axioms:

IF an expression log(X*Y) is to be simplified

THEN write it as log X+ logY.

2 IF an expression log(X/Y) is to be simplified

THEN write it as log X -logY.

3 IF an expression X is to be distributed among (Y +Z),

THEN write it as XY + XZ

4 IF an expression X is to be distributed among (Y -Z),

THEN write it as XY - XZ

The Student Module

This module consists of the model of students'
knowledge in the subject concerned. Two types of
models, the overlay model and bug-identification
model have been identified (Elsom-cook, 1988) in

the past. The first one describes the student's know­
ledge as part of the expert's knowledge while the
latter incorporates the student errors (bugs) in
addition to their correct knowledge. Fig. 2 shows
these two models of student knowledge with respect
to expert knowledge.

28 F. L. LEE

Fig. 2. Expert-based Modeling Method (Elsom-cook, 1988)

In Logex, the latter model is adopted since
diagnosing is its major function and students' errors
have to considered. Hence in addition to the strategic
and axiomatic rules stored in the expert module,
incorrect rules (called mal-rules) are also collected
through students' exercises and included in the
student model. Examples of mal-rules are shown in
Table. 2.

Table 2.
Examples of Mal-rules Used in the Student Module

Strategic Mal-rules:

2

IF

THEN

IF

THEN

a pattern log(X + Y) is observed,

treat it as log*(X+ Y) and distribute log among (X+ Y).

a pattern log(X*Y) is observed,

treat it as log*(X*Y) and distribute log among (X+ Y).

Axiomatic Mal-rules: Incorrect versions of axiomatic rules used by students:

IF an expression X is to be distributed among (Y*Z),

2

THEN

IF

THEN

The Tutoring Module

write it as XY * XZ

an expression X is to be distributed among (Y/Z),

write it as XY I XZ

Logex includes knowledge obtained by
observing how a tutor teaches a student in real
situations and expresses them as rules. These rules

indicate how the tutor reacts when a student error is
encountered. Usually, this includes giving suitable
feedback and asking the student to reenter. Table 3
shows examples of the rules used in Logex:

Table 3
Examples of Tutoring Rules Used in the Tutoring Module

Tutoring Rules: Rules for tutoring students

2

IF

THEN

IF

an integer is factorized incorrectly,

display "wrong factorization" and let the student do it again.

log(X*Y) is expressed as log X * log Y

THEN display "Check Rule 1" and let the student do it again.

3 IF answer is obtained

THEN display "Congratulation", and let the student continue with next
question if any.

AN INTELLIGENT COMPUTER TUTOR IN LOGARITHMS 29

The Communication Module

The communication module is responsible
for handling the input and output of the system.
The output component is relatively simple as this
only involves displaying messages to the students.
On the other hand, the input handling involves the
complex task of checking and understanding of
the texts entered by the students. This requires
several artificial intelligence techniques and is
handled by a component called Parser developed
within the system. The Parser does two jobs: it
checks whether the syntax of the text entered is
legal and also converts the texts into codes
understandable by Logex. Without the Parser, all
interaction between Logex and the user is
impossible.

The Language

The system was written with Prolog, an
artificial intelligence computer language. The
language system used is called Cogent Prolog
(Amzi!, 1994). Prolog is a high level English-like
programming language based on logical
reasoning. It draws strength from the principles of
mathematical logic - principles that were
developed well before the invention of the
computer (Walker, McCord, Sowa, & Wioson,
1987), and was recognized as the fifth generation
computer language.

Knowledge involved in the four modules of
Logex was written in the form of rules, or in the
terminology of Prolog, the predicates or clauses.
The inference mechanism embedded in Prolog
will automatically control the whole tutoring
process once triggered.

The Tutoring Process

Basically, the tutoring process is composed
of the repetition of a small interaction cycle which
involves the processes of prompting and waiting
for students' responses, and giving feedback.
Basically, a step done by the student may consist
of one or more such cycles depending on whether
he can be correct at the first attempt. Hence, for
each question, several interaction cycles are
repeated until the final solution is reached. The
subsequent questions will then be given until the
question bank is exhausted and the cycle is
repeated until all the correct solutions are found.
A flow chart showing how the tutoring process
works can be found in Figure 3.

~----------------~
I Set Q~o.=O I

I Q,~L.J I

No

Fig. 3 Flow Chart Showing How Logex Works

The brain of Logex is the Differentiator which
is in fact, doing all the checking and validating tasks.
The Differentiator' s job is to decide whether the
entered expression is acceptable given the old
expression, which is either the previously entered
expression or the given question if it is at the
beginning of a question. If the output from the
Differentiator is "Yes", the student will be allowed to
continue, either to the next step or the next question
depending on whether the question is finished or not.
If the output is "No", then the entered expression is
considered not acceptable, and the student is asked to
reenter by following the hints given by the computer
tutor. Only when an acceptable expression is entered
will the student be allowed to go on to the next step.

The Differentiator can be divided into four
components: the Parser, the Arranger, the Generator

30 F. L. LEE

and the Comparor. The Parser is responsible for
parsing the expressions entered into forms
recognizable by the computer. If the parsing process
fails, the entered expression will be rejected. On the
other hand, as an expression is made up of several
elements including numbers, terms and operators,
the order of these elements may vary even though the
value or the meaning of the expression remains
unchanged. Hence, for easy comparison between
expressions, every expression entered has to be
rearranged by the Arranger in a prespecified order.

The Generator is where most of the subject
knowledge resides. The generator is responsible for
generating new expressions from the old expressions
based on the strategic and the axiomatic rules (either
correct or incorrect) in the expert and student
modules. The newly generated expressions will be
compared with the expression entered by the student
within the Comparor. If the two are matched, which

Old Expression: log(6) j
I Parser

log(real(6))

Arranger

log(real(6))

Generator

log(mult(real(2), real(3)))

means the computer can understand why the student
entered the expression, the Differentiator will then
send out a message to indicate a match can be found.
This message may state that the expression entered is
correct if the expression generated is induced with a
correct rule, or if the latter is generated by an
incorrect rule, the incorrect rule(s) used will be
reported. Based on this message, the Differentiator
can make suitable responses to the student.

If the expressions do not match, new expres­
sions will be continuously generated until an
identical one can be found. If finally, no match can
be generated, which means that the computer cannot
understand the entered expression, the student is
prompted to enter again. Fig. 4 shows the relation­
ship among the four components of the Differentia­
tor and the process when an expression "log(2*3)"
is entered against the old expression "log (6)" (in
this case, it is the given question).

Entered Expression: log(2*3)

log(mult(real(2), real(3)))

log(mult(real(2), real(3)))

Fig. 4 Components of the Differentiator

Example

To show how Logex works, a simple example
is given below: ·

Suppose the expression "log (6)" is to be
simplified, the expression "log(6)" will be displayed

both on the Blackboard and the Exercise Book. On
the Exercise Book, below the given question, a "=" is
also displayed and the student is then prompted to
enter at the right-hand side of the equal sign.

If the student enters "log(2*3)", this newly
entered expression will then be sent to the Parser and

AN INTELLIGENT COMPUTER TUTOR IN LOGARITHMS 31

then to the Differentiator to check its validity and
correctness (Fig. 4 shows the process). After
checking with the existing correct and incorrect
rules, the Differentiator returns the checking result.
In this case, the result is correct. A "Correct"
message will then be displayed on the Blackboard
and the student is then prompted to continue with
next line.

Suppose the student then enters log(2)*log(3)
which is of course incorrect. The Differentiator finds
that this can be generated by using the mal-rule
"log(A *B)=log(A)*log(B)", hence a message
showing why this is wrong will be displayed. In this .
case, the Blackboard displays "Check Rule 1 ",
where rule 1 is displayed on the Notebook as
"log(A *B)=log(A)+log(B)".

After the student reenters the correct
expression, he will then be allowed to continue to
type in further expressions such as "log(2)+log(3)".
Logex checks every expression and returns suitable
feedback according to the tutoring rules in the Tutor
Module as shown in Table 3. The process is repeated
until the final answer, in this case "0.7781", is
reached. The message "Congratulation" will then be
displayed on the Blackboard, and the student is
allowed to proceed to the next question.

Conclusion

Logex demonstrates the possibility of using
Artificial Intelligence techniques in developing
computer tutors. Instead of prespecifying every
response at every decision point, Logex simply
incorporates the knowledge involved in the form of
rules so that responses to students' inputs are
generated in real time. This, in one way, greatly
reduces the time involved in carefully planning
every route at every decision point, and in another,
saves much of the computer memory spaces. Both
these factors make intelligent tutoring· systems a
practical tool to be used in real classroom situations.

Currently, Logex can only handle simplifica­
tion problems in logarithm. However, it is designed
so that without any structural modification, the
system can be made to be used in larger subject
domains by adding more knowledge. Hence, in
principle, the system can handle similar tutoring
tasks in any subject areas provided we can have large
enough machines and sufficient understanding of
human problem solving processes so that these
processes can be recoded in the form of rules.
Practically, if we restrict ourselves to some
reasonably smaller subject areas, intelligent tutoring
systems can be of great help to our students.

References
Amzi! (1994). Manual of Cogent Prolog Ver.3.0. Massachu­

setts: Amzi! Inc.
Anderson, J.R. (1992). Intelligent tutoring and high school

mathematics. In Frasson, C., Gauthier G., & McCalla G.
I. (Ed), Proceedings, Intelligent tutoring systems, Second
international conference, ITS '92. (pp. 1-10). New York:
Springer-Verlag.

Anderson, J.R., Boyle, C.E., & Yost, G. (1985). The geometry
tutor. Proceedings of the International Joint Conference on
Artificial Intelligence. (pp. 1-7). Los Angeles, CA.

Baffe, P. (1996). Refinement-based student modeling and
automated bug library construction. Journal of Artificial
Intelligence in education 7 (1), 75-117.

Clancey, W. (1982). Tutoring rules for guiding a case method
dialogue. In Sleeman D. & Brown J. S.(Ed). Intelligent
tutoring systems. (pp. 201-225). New York: Academic Press.

Elsom-cook, M. (1988). Guided discovery tutoring and
bounded user modeling. In Self J.(Ed), Artificial intel­
ligence and human learning. (pp. 165-178). New York:
Chapman and Hall.

Garito, M.A. (1991). Artificial intelligence in education:
evaluation of the teaching-learning relationship. British
Journal of Educational Technology, 22 (1), 41-47.

Giangrandi, P., & Tasso, C. (1995). Truth maintenance
techniques for modelling student's behaviour. Journal of
artificial intelligence in education, 6 (2/3), 153-202.

Goodyear, P. (1991). Research on teaching and the design of
tutoring tutoring systems. In Goodyear. P (Ed). Teaching
knowledge and intelligent tutoring. (pp. 3-23). NJ: Ablex.

Lewis, M. W., Milson, R. & Anderson, J. R. (1987). The
teacher's apprentice: designing an intelligent authoring
system for high school mathematics. In Kearsley, G. (Ed),
Artificial intelligence and instruction, applications and
methods. (pp. 269-301). Tokyo: Addision-Wesley.

Mao, Y & Lin, J. (1992). Intelligent tutoring system for
symbolic calculating. In Frasson C., Gauthier G. &
McCalla G. I. (Ed), Proceedings, Intelligent tutoring
systems, Second international conference, ITS '92. (pp.
132-139). New York: Springer-Verlag.

Marcke, K. V. (1992). Instructional Expertise. In Frasson, C.,
Gauthier G., & McCalla G. I. (Ed), Proceedings, Intelligent
tutoring systems, Second international conference, ITS
'92. (pp. 234-243). New York: Springer-Verlag.

Park, 0. (1991). Functional characteristics of intelligent
computer-assisted instruction: Intelligent features. In The
Educational Technology Anthology Series: Expert
Systems and Intelligent Computer-Aided Instruction. (pp.
146-153). New Jersey: Eaglewood Cliffs.

Rambally, G. K. (1986). the AI approach to CAL The
computer teacher, I 3 (7), 39-42.

Reiser, B. J., Anderson, J. R., & Farell, R. G. (1985). Dynamic
student modelling in an intelligent tutor for LISP
programming. Proceedings of the International Joint
Conference on Artificial Intelligence (pp. 8-14). Los
Angeles, CA.

Self, J. (1988)(Ed). Artificial intelligence and human
learning. Chapman and Hall.

Walker, A., McCord, M., Sowa, J. F., & Wilson, W. G.
(1987). Knowledge systems and Prolog. Addison­
Wesley.

Woolf, B. P. (1987). Theoretical frontiers in building a
machine tutor. In G. Kearsley (Ed), Artificial intelligence
and instruction, applications and methods. Addision­
Wesley.

