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An Overview of the Performance of Four Alternatives 
to Hotelling's T Square 
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The Chinese University of Hong Kong 

Hotelling's T2 is seriously nonrobust when the variance-covariance (v-c) matrices are heteroscedastic and 
when the sampled populations are skewed and have positive kurtosis. Based on some relevant empirical studies, 
four alternatives to T2 --James' first order,lTames' second order, Yao's,and Johansen's tests--, were reviewed. 
Under v-c heteroscedasticity and/or nonnormality, although James' first order test performs better than T2, its 
estimated Type I error rates are not as good as those produced by the other three tests. 
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In educational research, it is often necessary to 
compare two groups of subjects on the means of 
several response variables. That is, two independent 
random samples of sizes n

1 
and npn p dependent 

variables are collected from two populations, whose 
variance-covariance (v-c) matrices of size p x pare 
2:, and 2:

2
; then the hypthesis of equal mean vectors 

for the two populations is tested. Under the assump­
tions of normality and v-c homogeneity, Hotelling's 
( 1931) T2 is the uniform! y most powerful test of the 
hypthesis. However, in practice, data are unlikely to 
meet these two assumptions. Stevens (1979) cited 
nine multivariate studies in which v-c 
heteroscedasticity was often a reality. Micceri (1989), 
on the other hand, conducted a survey of the skew­
ness of 440 univariate distributions and found that 
only 6.8 percent of the distributions exhibited nor­
mality by virtue of their relative symmetry and both 
tail weight. 

Investigations of the robustness' of Hotelling's 
T2 with respect to violations ofv-c homogeneity and/ 
or normality have been conducted from both analyti­
cal (Ito, 1969; Ito & Schull, 1964) and empirical 
(Algina & Oshima, 1990; Algina & Tang, 1988; 
Everitt, 1979; Hakstian, Roed, & Lind, 1979; 
Holloway & Dunn, 1967; Hopkins & Clay, 1963; 
Nath & Duran, 1983; and Zwick, 1986) standpoints. 
All of the studies have indicated that under 
nonnormality T2 is quite robust, but that under v-c 
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heteroscedasticity T2 may not be robust when n 
1 
= n

2 
and is likely not robust when n

1 
=t: n

2
• Specifically, 

when the sample sizes are large and equal and when 
N/p (where N = n

1 
+ n

2
) is large, T2 is robust. 

Otherwise, it is less robust, being conservative2 when 
the larger of n

1 
and n

2
is drawn from the population 

with larger dispersion, and being liberaP the 
other way around. Furthermore, the discrepancy 
between the actual Type I error rate (a) and the 
nominal Type I error rate (r) increases with the 
magnitude of the inequality of the two samples, with 
the degree of heteroscedasticity, and with p. 

As a result, the Behrens-Fisher problems--a 
comparison of the means of two groups under v-c 
heteroscedasticity--has been a popular subject in 
multivariate research. Several alternatives to T2

, in­
tended to produce better results for the Behrens­
Fisher problem, have been proposed. Among the 
alternatives are James' ( 1954) first and second order 
tests, Yao's (1965) test, and Johansen's (1980) test. 
Distributed asymptotically as chi-square with p de­
grees of freedom, the statistic used by these four tests 
is 

2 - - , sl Sz -l - -
Tv - (xl- Xa) (-"--- + -) (x1- Xa) 

n 1 n 2 

where X. and S. are the mean vector and v-c 
matrix for the

1 

ith sa~ple, i = 1, 2. The critical values 
of these four tests are as follows: 
1. The critical value of James' test, either first or 



second order, is composed of a series of terms in 
decreasing order of magnitude. Expressed in terms 
up to order (n. - 1 )- 1

, the critical value of James' first 
order test is ' 

where 

and 

[tr (I - w- 1w1) J 2 

n 1 - 1 

In these expressions, W. = (S./n} 1
, W = W

1 
+ W?, tr 

is the trace operator, a~d x2a'(p) is the (1 - ci)th 
percentile of the chi-square distribution with p de­
grees of freedom. 

2. Expressed in terms up to order (ni - 1 t 2
, the 

critical value of James' second order test is 
h/S 1, S2; a)= h

1 
(S

1
, S

2
; a)+ O[(ni- 1)-2

] 

where O[(ni - 1)]-2 is given in formula 6.7 of 
James' (1954) paper. 

3. The critical value ofYao's test is T2 (p, f; a), the 
(1 - a)th percentile of the distribution of 
Hotelling's T:.:_ Let:_Ei ~ S/ni and_E = _E 1 + E2• 

Define Vi = (X
1 

- X
2

) E- 1 EiE- 1(X
1 

- X
2
). The 

quantity f is defined by 

.1_ ... t 1 (~)2 • 
f i•1 (ni - 1) Tv2 

4. The critical value of Johansen's test is CF a (p,q), 
where F a(p, q) is the ( 1 - a)th percentile of the F 
distribution with p and q degrees of freedom, 
and 
C = p + 2A- 6A I (p + 2), 

q = p (p + 2) I 3A, 

2 

A-)' 
t:! 
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Review of Literature 
This review is based on some relevant empirical 

studies of the robustness of the four alternatives to 
Hotelling's T2• 

( 1) Robustness of James' First Order Test 

Y ao ( 1965) conducted a simulation study for p 
= 2 to estimate Type I error rates of James' first order 
test and his own test. His results indicated that while 
both tests are quite robust under v-c 
heteroscedasticity, Y ao 's test performs on average 
better than James' test. Algina and Tang (1988) 
conducted a more extensive study than Yao's on the 
performance of T2

, Y ao 's test, and James' first order 
test under v -c heteroscedasticity. In their study, three 
of the factors and their levels were p = 2, 6, and 1 0; 
Nip = 6, 10, and 20; and n

1
:n

2 
= 1:5, 1:3, 1:4, 1:2, 

1:1.5, 1:1.25,1:1, 1.25:1, 1.5:1,2:1,3:1,4:1,and5:1. 
In terms of controlling the error rates, both James' 
and Y ao' s test perform better than T2

• Neither test 
tends to be conservative, with the estimated error 
rates of James' test being larger than those of Y ao 's. 

Algina, Oshima, and Tang ( 1991) studied the 
effect of v-c heteroscedasticity and nonnormality 
upon James' first order test and the other three tests. 
Uniform, exponential, t(5), beta(5, 1.5)4

, Laplace, and 
lognormal distributions were used to generate 
nonnormal data. In comparison, the performance of 
the other three tests is slightly superior to that of 
James's first order test. That is, their estimated error 
rates are more closer to the nominal error rate than 
those produced by James' first order test. 

(2) Robustness of James' Second Order Test 
and Johansen's Test 

Algina, Oshima, and Tang ( 1991) investigated 
the robustness of James' second order and Johansen's 
tests under v -c heteroscedasticity and nonnormality. 
Using the six nonnormal distributions mentioned in 
( 1 ), they found that both tests may not be robust when 
the v-c matrices are heteroscedastic and when the 
sampled populations are skewed and have positive 
kurtosis. Specifically, both tests are seriously 
nonrobust with exponential (skewness = 2 and kur­
tosis = 6) and lognormal (skewness = 6.18 and 
kurtosis= 110.93) distributions and slightly nonrobust 
with the beta distribution (skewness = -0.82 and 
kurtosis = 0.28). For example, in the negative rela­
tionship when a= .05, p = 10, Nip= 20, and n

1
:n

2 
= 

4: 1, the estimated error rates for James' second order 
test and Johansen's test are respectively .095 and 
.1 01 under exponential distribution, .197 and .203 
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under lognormal distribution, and .063 and .069 
under beta distribution. It is fairly robust with respect 
to the remaining three symmetric distributions. 

Lin (1991) investigated the robustness of 
James' second order and Johansen's tests under v-c 
heteroscedasticity and nonnormality when 
N/p = 5, 7, and 9. Besides the normal distribution, the 
beta (2.5, 1) and exponential distributions were in­
cluded in her study. The skewness and kurtosis are 
-0.73 and -0.24 for the beta distribution and 2.0 and 
6.0 for the exponential distribution. 

With a set at 0.05, Bradley's (1978) liberal 
criterion for robustness is a Type I error rate in the 
interval [0.025, 0.075]. Table 1 contains the percent­
ages offs within this interval for the normal distribu­
tions with I.2 * d2I.1, and with I,2 = d2I,

1
• With the 

TABLE 1 

normal distribution and I,2 =t:; d2I,
1
, all [s for both tests 

are within the interval for N/p = 7 or 9. For N/p = 5, 
[s for both tests occur outside the interval in the 
negative5 relationship when n

1 
:n2 = 2:1. With the 

normal distribution and I,2 = d2I,
1
, all but one [s for 

both tests are within the interval in the equal-sample­
size relationship, regardless of the level of N/p. On 
the other hand, in the negative relationship, the 
percentage of [s outside the interval increases as 
N/p decreases. Specifically, for N/p = 9, only two of 
the fs occur outside the interval in Johansen's test for 
n

1
:n2 = 2:1 and d = 3; for N/p = 7, [s outside the 

interval occur in both tests for n
1 
:n2 = 2:1 and d = 3; 

and for N/p = 5, rs outside the interval occur in both 
tests for other conditions than n

1 
:n2 = 1.5: 1 and d = 

1.5. . 

Percentage of Estimated Type I Error Rates within Bradley's Criterion for the Normal Distributions with 
L2 * d2I,, and with L2 = d2I,1 When a= .05 

I,2 * d2I,, 

N/p n
1 
& n2 Johansen 

5 n 1 =n2 100% 
n, > n2a 50% 
n, < nzb 100% 

7 n 1 = n2 100% 
n

1 
> n

2 
100% 

n 1 < n2 
100% 

9 n, = n2 100% 
n

1 
>n2 100% 

n, < n2 
100% 

a negative relationship between sample sizes and v-c matrices. 
b positive relationship between sample sizes and v-c matrices. 

TABLE2 

I, = d2I, 
2 I 

James Johansen James 

100% 83% 100% 
67% 17% 33% 

100% 

100% 100% 100% 
100% 75% 75% 
100% 

100% 100% 100% 
100% 83% 100% 
100% 

Percentage of Estimated Type I Error Rates within Bradley's Criterion for the Beta. Distributions with L-
2 

=t:; 

d2L.
1 

and with L
2 

= d2I,, When a= .05 

I,2 :f::. d2I,, 
N/p n

1 
& n2 Johansen 

5 n1 =n2 67% 
n, >n/ 25% 
n, < nzb 100% 

7 n 1 = n2 
100% 

n, > n2 
75% 

n1 < n2 100% 

9 n1 = n2 
100% 

n 1 > n2 92% 
n 1 <n2 100% 

a negative relationship between sample sizes and v-c matrices. 
b positive relationship between sample Sizes and v-c matrices. 

I,2 = d2I,, 
James Johansen James 

83% 50% 50% 
33% 0% 8% 

100% 

100% 83% 83% 
75% 17% 33% 

100% 

100% 100% 100% 
92% 67% 67% 

100% 



Table 2 contains the percentages ofis within the 
interval for the beta distributions with L

2 
:f::. d2I,~nd 

with I,2 = d2I, 1• With the beta distribution and 2..
2 

:f::. 

d2I,1, for N/p = 9, only one [for each test occurs 
outside the interval in the negative relationship. The 
estimates are .0815 for James' test and .0855 for 
Johansen's test and occur when n

1 
:n

2 
= 2:1 and d = 3. 

For N/p = 7, rs outside the interval occur in the 
negative relationship when n

1 
:n

2 
= 2: 1 and d = 3. For 

N/p = 5, rs outside the interval occur in the negative 
relationship when n 

1 
:n

2 
~ 1.5, and occur in the equal­

sample-size relationship when d = 3. With the beta 
distribution and L

2 
= d2I,

1
, for N/p = 9, [s for both 

tests occur outside the interval in the negative rela­
tionship when n

1 
:n

2 
~ 1.5 and d = 3. For N/p =7, rs for 

both tests occur outside the interval in the negative 
relationship when n

1
:n

2 
~ 1.5, and in the equal­

sample-size relationship when d = 3. For N/p = 5, 
almost all [s for both tests occur outside the interval 
in the negative relationship and half of the rs in the 
equal-sample-size relationship when d =3. 

For the exponential distribution with I,
2 

:;t. d2I,
1
, 

the percentages of rs within the interval are 42% for 
James' test and 33% for Johansen's test in the negative 
relationship and for N/p = 9. Most of them occur 
when d = 3, irrespective of the level of n

1 
:n

2
• 

In terms of the relationship between sample sizes 
and v-c matrices, the two tests perform similarly in 
the positive and equal-sample-size relationships, but 
James' test performs slight! y better than Johansen's 
test in the negative relationship. For example, r is 
.0660 for James' test and .0715 for Johansen's test 
whenN/p=5,n

1
:n

2
= 1.5:1,andd= 1.5.Furthermore, 

James' second order test tends to perform better for 
large values of p but Johansen's test tends to perform 
better for small values of p. 

(3) Robustness ofYao' s Test 

As an extension of Welsh's (1938, 1951) solu­
tion to the Behrens-Fisher problem for two samples, 
Yao' s ( 1965) simulation study showed that his test is 
slightly superior to James' first order test. Since only 
the bivariate case was considered, the generality of 
his results is limited. 

Algina and Tang (1988) extended Yao's study 
to investigate the robustness to heteroscedasticity of 
Yao'stest. Theyconcludedthati)whenn

1
=n

2
, Yao's 

test generates appropriate error rates when 10 :s; N/p 
:s; 20. When n

1 
< n

2
, Yao's test produces appropriate 

errorrates except when n
1 
:n

2 
= 1:5 and N/p :s; 6. When 

n 
1 
> n

2
, Y ao' s test produces appropriate error rates 

provided that N/p ~ 10 and n
1 
:n

2 
< 2. When N/p ~ 20, 

the test can be safely used when p =6 and n
1 
:n

2 
is as 
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large as 3:1, and when p = 10 and n
1
:n

2 
is as large as 

4:1. 
Algina, Oshima, and Tang (1991) studied the 

robustness ofY ao 's test under v-c heteroscedasticity 
and nonnormality. Guided by the recommendations 
of Algin a and Tang ( 1988) for the safe use of Y ao 's 
test, they used 10 and 20 for the ratio N/p. Their study 
indicated that when the sampled distributions are 
symmetric, Yao's test is quite robust under v-c 
heteroscedasticity and unequal sample sizes. How­
ever, when the distributions are skewed and have 
positive kurtosis, the test tends to be liberal. For 
example, in the negative relationship when a= 0.05, 
p = 2, n

1
:n

2 
= 2:1, and N/p = 10, the estimated error 

rate of the test is 0.122 under the lognormal distri­
bution. Their findings are consistent with those of 
Clinch and Keselman (1982), which indicated that 
the univariate counterpart toY ao 's test is liberal with 
skewed distribution. 

Conclusions and Recommendations 
This review of the performance of the four 

alternatives to Hotelling's T2 is intended to provide 
researchers with some guidelines when conducting 
multivariate tests for two samples under v-c 
heteroscedasticity and/or nonnormality. 

Although James' first order test performs better 
than T2 under v-c heteroscedasticity and 
nonnormality, its estimated Type I error rates are not 
as good as those produced by the other three tests. 
Hence, only James' second order, Yao's, and 
Johansen's tests will be included for further con­
sideration. 

The generalizability of the results for the three 
tests is limited by the range of values for the factors 
reviewed in this article. Furthermore, in practice, 
sample v-c matrices may not be a reliable guide to the 
direction of the relationship between sample sizes 
and v -c matnces and to the type of heterosc.edasticity. 
Thus relationship (negative or positive) and type of 
heteroscedasticity will be suppressed for consider­
ation. With these restrictions in mind, the following 
conclusions can be set forth: 
1. Before collecting data, researchers need to con­

sider the likely distributional characteristics of 
the data in order to select the appropriate sample 
sizes. 

2. With symmetric distributions, N/p should be at 
least 9 if 1.5 < n 

1 
:n

2 
:s; 2.0; N/p cap be reduced to 

7 if n
1 
:n

2 
:s; 1.5; and N/p = 5 may be sufficient if 

n1 = n2• 

3. With moderately skewed distributions (such as 
beta distribution), N/p = 7 may be sufficient if n 

1 

=n2. 



114 LIN 

4. With skewed distributions (such as lognormal 
and exponential distributions), the performance 
of all the three tests is poor, even when N/p = 9. 
Additional research with larger N/p (i.e., N/p 2:: 
20) ratios is required to determine the minimum 
ratio needed for the tests to perform adequately. 

5. Both Jam.es' second order and Johansen's tests 
can be generalized to more than two groups, 
whereas Yao 's test cannot. Therefore, when 
research involves two or more groups, James' 
and Johansen's tests are recommended. 

6. By comparison, the performance of James' test 
is slightly better than that of Johansen's test, 
especially in the negative relationship. In addi­
tion, as p increases, the performance of James' 
test improves and that of Johansen's test de­
clines. On the other hand, while James' test is 
quite involved computationally, Johansen's test 
is comparatively simple. In addition, Johansen's 
test can be used for factorial designs. 

Notes 
1Roughly speaking, a test is robust if its Type I error rates are nto 
affected drastically by v-c heteroscedasticity and/ornonnorrnality. 
2A test is conservative if the actual error rate is smaller than the 
nominal error rate. 
3A test is liberal if the actual error rate is larger than the nominal 
error rate. 
4t(5) stands for Student's t distribution with 5 degrees of freedom 
and beta (5, 1.5) stands for beta distribution with parameters 5 and 
1.5. 
5Positive relationship means that the larger of n

1 
and n

2 
is drawn 

from the population with larger v-c matrix; negative relationship 
means the other way around; and equal-sample-size relationship 
means that since n

1
= n

2
, it is irrelevant whether n

1 
or n

2 
is drawn 

from the population with either larger or smaller v-c matrix. 
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