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Of increasing interest to the educational assessment researchers is the role 
of educational assessment practices on student achievement-related 
outcomes (Black & Wiliam, 1998). By their inherent nature, the data 
collected in this line of research are hierarchically structured in that 
students are nested within classes. As might be expected, not considering 
the nested nature of the data in the educational assessment research may 
lead to invalid inferences about the relationship between educational 
assessment and student motivation and achievement. As a means of drawing 
valid inferences from hierarchically structured data, this paper highlights 
the utility and applicability of hierarchical linear modeling techniques in 
the educational assessment research. These techniques not only facilitate a 
decomposition of the relationship between the variables into separate 
student-level and class-level components, but also recognize the 
dependence among the outcomes of students within the same class 
(Raudenbush & Bryk, 2002). This dependence may arise as a result of 
shared students’ experiences with regard to the teacher’s assessment 
practices. This paper discusses the necessity for using these techniques in  
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the educational assessment research in order to validate inferences and 
further research agenda in this area. 

Key words: Hierarchical Linear Models, educational assessment 
research, data analysis 

Introduction 

Of increasing interest to educational assessment researchers is the 
influence of educational assessment practices on student motivation and 
achievement (Brookhart, 1994). In this line of research, key explanatory 
variables are typically measured at the classroom-level whereas the 
outcome variables are at the student-level. Under these circumstances, 
the researchers are required to utilize hierarchical linear modeling (HLM) 
analyses (Raudenbush & Bryk, 2002) to not only appropriately test 
relationships occurring at each level of the hierarchy, but also estimate 
potentially meaningful relationships that might cross the different levels 
of the hierarchy. 

Given the movement in educational assessment research toward 
the role of educational assessment practices on student outcomes, it 
seems reasonable to argue that careful consideration of the hierarchical 
structure of the data is certainly warranted. The purpose of this paper is 
to highlight the utility and applicability of HLM as an appropriate way 
of handling the hierarchical structure of the data collected in educational 
assessment research. It should be acknowledged that the paper is an 
expository summary of HLM which is originated from Raudenbush and 
other statisticians. The readers are encouraged to utilize the references 
cited in the paper for more details about the topic. The paper begins with 
a discussion of the necessity for using HLM in the educational 
assessment research and then provides an overview of the conceptual 
framework of HLM along with certain methodological issues that need 
to be considered when employing the HLM. Throughout the paper, a 
real example from educational assessment literature will be used to 
illustrate the points. 
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The Necessity for HLM 

HLM is a statistical method for analyzing hierarchically structured data 
(Raudenbush & Bryk, 2002). We say that a data set is hierarchically 
structured when we have lower-level observations nested within higher-
level observations. For example, educational assessment researchers 
seeking to examine the effects of classroom assessment practices on 
student achievement may collect data on students in classrooms. Such 
data may include variables that describe students, such as student 
socioeconomic status (SES) and student achievement, as well as 
variables that describe classrooms, such as teacher’s frequent use of 
alternative assessments (ALTR). By their nature, such data require an 
analysis that takes into account the variability associated with each level 
of the hierarchy, that is, the variability within-classrooms and the 
variability between-classrooms. 

The need for using HLM originates from the problems of using 
single-level analyses for hierarchically structured data. Some of these 
problems are aggregation bias, fallacy of wrong level, and unit of 
analysis. First, when data are aggregated, the within-class variance 
would be ignored and as such much information is lost, statistical power 
is reduced, a shift occurs in the meaning of the variables, and the 
relationship between the variables might differ in magnitude and 
direction for different levels of the analysis (Hox, 2002; Kreft & Leeuw, 
1998; Snijders & Bosker, 1999). Likewise, when data are disaggregated, 
we might violate the assumption of independent observations which can 
lead to smaller estimates of standard errors that can result in rejecting 
the null hypotheses more often than we should (Hox, 2002; Kreft & 
Leeuw, 1998; Raudenbush & Bryk, 2002). Students within a classroom 
may share common characteristics of the teacher and his or her 
assessment practices, and as such even though students respond 
differently to the same classroom assessment activity, their responses 
may have commonality. As a result, outcome observations on students 
cannot often be assumed independent. Aggregation or disaggregation of 
the data can also lead to fallacies of the wrong level in which 
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conclusions are made at one level based on analyses at another level 
(Hox, 2002; Kreft & Leeuw, 1998; Snijders & Bosker, 1999). 

Moreover, the appropriate unit of analysis, students or classrooms, 
may become a problematic issue in single-level analyses when the 
explanatory variables are measured at the classroom-level, but the 
outcome variable is measured at the student-level (Raudenbush & Bryk, 
2002). For example, if a researcher is concerned with how class-level 
variables (e.g., teacher’s frequent uses of ALTR) affect the student-level 
outcome (e.g., student achievement), the question then arises as to what 
are the objects of measurement and analysis in the study and how to deal 
with potentially meaningful relations that might cross the class-level and 
student-level. As might be expected, ignoring the hierarchical nested 
nature of the data can result in misguided conclusions about the impact 
of classroom assessment on student. Fortunately, HLM acknowledges 
both levels of the hierarchy as critically important and as such treats 
them simultaneously (Kreft & Leeuw, 1998). 

A Conceptual Illustration of HLM 

To understand how HLM operates, let’s suppose that a researcher is 
interested in how student’s SES and teacher’s frequent use of ALTR 
influence student achievement. The researcher has collected data about 
teachers’ self-reported frequency of using ALTR and students’ SES and 
achievement scores. In this example, the objects of interest and 
measurement are teachers and students. Under the HLM framework, a 
clear conceptual distinction is made between student-level and class-
level variables and effects. This conception is reflected in the two 
models that make up a two-level HLM. The first model captures the 
primary effects at the student-level within each class. The second model 
attempts to explain these student-level effects in terms of class-level 
variables. 
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A Fully Unconditional Model 

HLM analyses usually begin with a fully unconditional model to mainly 
determine how much variation in the outcome lies within and between 
classrooms. The within-class model (also called the student-level or 
level-1 model) is: 

ijjij rY += 0β , (1) 

where  is the achievement score for student i in class j, ijY j0β  is the 
intercept representing the average achievement for class j, and  is the 
error of estimate for achievement score of student i in class j. 

ijr

The between-class model (also called the class-level or level-2 
model) is: 

,0000 jj u+= γβ  (2) 

where 00γ  is the grand mean for achievement across all classrooms and 
 is the effect of class j on the average achievement. ju0

The fully unconditional model can indicate: 
1. The significance of the average class means for achievement. 
2. The pooled within-class variance ( ) in achievement. 2σ̂
3. The significance of the between-class variance ( 00τ ) in 

achievement. 
4. The proportion of variance in the achievement between 

classrooms, also called the intraclass correlation (ICC), which is equal 
to )ˆˆ(ˆ 2

0000 σττ + . 
5. An overall measure of the reliability of the class sample 

means as indicators of the true class means. 

A Random-coefficient Regression Model 

The next step in the analyses is to proceed with a random-coefficient 
regression model in order to test the effect of student-level independent 
variables on the outcome. In our example, the student-level independent 
variable is student’s SES. The within-class model is: 

ijjijjjij rXXY +−+= )( .10 ββ , (3) 

 



46 Hussain Alkharusi 

where j1β  is the SES slope representing the relationship between SES 
and achievement in class j,  is the SES score for student i in class j, 
and 

ijX
jX .  is the average SES for class j. Notice that the independent 

variable ( X ) in Equation (3) was centered around its group mean ( jX . ) 
to be more meaningful. If it was kept in a raw score form, the intercept 
( j0β ) would be the expected achievement score for a student whose 
SES is zero. If the SES was measured on a scale ranging from 1 to 6, 
then a SES of zero would not be informative. 

The between-class model is: 

jj u0000 += γβ , 

jj u1101 += γβ , (4) 

where 10γ  is the average SES slope for the relationship between SES 
and achievement pooled within all classrooms, and  is the effect of 
class j on the relationship between SES and achievement. 

ju1

The random-coefficient regression model can indicate: 
1. Whether on average student’s SES is significantly related to 

achievement within classes. 
2. The proportion of the within-class variance in achievement 

accounted for by student’s SES computed as 
mod)](ˆ/mod)}(ˆmod)(ˆ[{ 2222 baserandomregbaseRy σσσ −= . 

The random ANOVA model described above provides the 
appropriate base model for this application. 

3. Whether significant differences exist among class means on 
achievement. 

4. Whether the relationship between student’s SES and 
achievement varies significantly across classes. 

5. The correlation coefficient between (a) class means on 
achievement and (b) student SES effect on achievement. In other words, 
do classes with high means on achievement tend also to have a strong 
relationship between SES and achievement? 

6. Average reliability estimates of the intercepts ( ) and 
slopes ( ). 

j0β̂
j1β̂
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An Intercepts-and-slopes-as-outcomes Regression Model 

Having estimated the variability across classrooms in (a) the average 
achievement and (b) the relationship between SES and achievement, the 
analyses should proceed with intercepts-and-slopes-as-outcomes 
regression models to explain this variability as a function of class-level 
variables. In our example, the question to be answered in this stage of 
the modeling process is: To what extent are the observed differences 
across classrooms in the average achievement and in the relationship 
between SES and achievement are a function of teacher’s frequent use 
of ALTR? 

The within-class model remains the same as in the random-
coefficient regression model above (see Equation 3). But, the between-
class model is expanded to include teacher’s frequent use of ALTR as 
follows: 

jjj uW 001000 ++= γγβ , 

jjj uW 111101 ++= γγβ , (5) 

where  is the teacher’s self-reported frequency of using ALTR 
ranging from 0 (never) to 4 (always), 

jW
00γ  is the grand mean for 

achievement across all classrooms after accounting for ALTR, 01γ  is 
the effect of ALTR on average achievement for class j, 10γ  is the 
average slope for the relationship between SES and achievement pooled 
within all classrooms after accounting for ALTR, 11γ  is the effect of 
ALTR on the relationship between SES and achievement for class j 
(also called a cross-level interaction effect involving teacher’s frequent 
use of ALTR and student SES), and  is the effect of class j on the 
average achievement after accounting for ALTR and  is the effect of 
class j on the relationship between SES and achievement after 
accounting for ALTR. 

ju0

ju1

The intercepts-and-slopes-as-outcomes regression model can 
indicate: 

1. Whether ALTR is significantly related to class mean 
achievement. 
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2. Whether ALTR significantly moderates the relationship 
between SES and achievement. 

3. Whether a significant variation remains unexplained in (a) the 
average achievement and (b) the relationship between SES and 
achievement after accounting for ALTR. 

4. The proportion of the variance between classrooms in (a) the 
average achievement and (b) the relationship between SES and 
achievement explained by ALTR as follows: 

mod)](ˆ/mod)}(intˆmod)(ˆ[{)(2 baseslpbaseR qqqqqqq j
τττβ −= , 

where q  = 0 and 1. The random-coefficient regression model provides 
the appropriate base model for this application. 

A Means-as-outcomes Regression Model 

Suppose the researcher was primarily concerned with average 
differences in achievement among classrooms and how teacher’s 
frequent use of ALTR contributes to these differences. In this situation, 
the researcher should follow the aforementioned fully unconditional 
model with a means-as-outcomes regression model. This model is often 
used when the primary interest focuses on the effect of level-2 variables 
on a single level-2 outcome namely the intercept ( j0β ). 

When employing the means-as-outcomes regression model, the 
within-class model remains the same as in the fully unconditional model 
(see Equation 1). But, the between-class model is expanded so that each 
classroom’s average achievement is explained by teacher’s frequent use 
of ALTR ( ) as follows: jW

jjj uW 001000 ++= γγβ  (6) 

The means-as-outcomes regression model can indicate: 
1. Whether ALTR is significantly related to class mean 

achievement. 
2. Whether a significant variation among class means on 

achievement remains to be explained after accounting for ALTR. 
3. The proportion of the variance between classrooms in the 

achievement accounted for by ALTR as follows: 
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mod)](ˆ/mod)}(ˆmod)(ˆ[{)( 0000000
2 basemeasotcbaseR j τττβ −=

 
The random-ANOVA model described above provides the 

appropriate base model for this application. 

A One-way Random-effects ANCOVA Model 

Suppose the researcher was interested in how teacher’s frequent use of 
ALTR influences the achievement of student over and above the 
influence of student self-efficacy. In this case, the researcher should 
follow the aforementioned fully unconditional model with a one-way 
random-effects ANCOVA model. 

The within-class model would become: 

ijijjjij rXXY +−+= )( ..10 ββ , (7) 

where j0β  is the average achievement for class j adjusted for student 
self-efficacy, j1β  is the self-efficacy slope representing the relationship 
between self-efficacy and achievement in class j,  is the self-
efficacy score for student i in class j, and 

ijX
..X  is the grand mean of self-

efficacy across all classrooms. Notice that the independent variable ( X ) 
in Equation (7) was centered around its grand mean ( ..X ) because it 
was assumed to have the same effect for each classroom. 

The between-class model would be: 

jjj uW 001000 ++= γγβ , 

101 γβ =j , (8) 

where 00γ  is the average of the adjusted means for achievement across 
all classrooms after accounting for ALTR, 01γ  is the effect of ALTR on 
average achievement for class j after controlling for student self-efficacy, 

10γ  is the pooled within-classroom regression coefficient for student 
self-efficacy, and  is the effect of class j on the adjusted average 
achievement after accounting for ALTR. 

ju0

This one-way random-effects ANCOVA model can indicate: 
1. The significance of the average adjusted means for 

achievement across all classrooms after accounting for ALTR. 
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2. Whether ALTR is significantly related to class mean 
achievement after controlling for student self-efficacy. 

3. The significance of the average effect of student self-efficacy 
on student achievement across all classrooms. 

4. The proportion of the within-class variance in achievement 
accounted for by student self-efficacy computed as 

mod)](ˆ/mod)}cov(ˆmod)(ˆ[{ 2222 baserandomanbaseR y σσσ −=
 

The random ANOVA model described above provides the 
appropriate base model for this application. 

5. Whether a significant variation in the adjusted average 
achievement remains unexplained after accounting for ALTR. 

6. The proportion of the variance in the adjusted class average 
achievement accounted for by ALTR as follows: 

mod)](ˆ/mod)}cov(ˆmod)(ˆ[{)( 0000000
2 baserandomanbaseR j τττβ −=

 
The random-ANOVA model described above provides the 

appropriate base model for this application. 
When compared to the classical ANCOVA approach, the HLM 

approach is more advantageous for the following four reasons (Kreft & 
Leeuw, 1998; Raudenbush & Bryk, 2002): 

1. In HLM, the variability among outcome adjusted classrooms’ 
means can be explained by classroom characteristics, whereas the 
classical ANCOVA approach may not be able to state why do the 
classrooms differ in their adjusted outcome means. 

2. In the classical ANCOVA approach, we cannot partition the 
random part as we do in the HLM approach into within- and between-
class variability. 

3. The classical ANCOVA approach assumes that the effect of 
the covariate on the outcome is assumed to be the same across all the 
groups in the population, whereas in the HLM approach, this 
assumption becomes less strict by building a model to explain 
variability in the slopes if the effect of the level-1 covariate is found to 
vary across level-2 units. 
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4. The HLM approach provides more efficient estimates of the 
class-level effects than the classical ANCOVA approach when 
classrooms have unequal number of students. 

Some Methodological Issues in HLM 

Assumptions 

The validity of inferences based on the two-level HLM considered in 
our example can be assessed by verifying the tenability of six key 
assumptions (Raudenbush & Bryk, 2002): 

1. Level-1 errors are independent and identically normally 
distributed with a mean of 0 and a variance of . The normality 
assumption can be checked by looking at a normal probability plot for 
the standardized level-1 residuals pooled across units. These residuals 
should be approximately on a 45 degree line. The homogeneity of 
variance assumption can be checked by running a  test for 
homogeneity of level-1 variances provided by HLM6 program 
(Raudenbush, Bryk, Cheong, & Congdon, 2004). A non-statistically 
significant  provides evidence of the level-1 variance homogeneity. 

2σ

2χ

2χ
2. The level-1 predictor is independent of level-1 errors. This 

assumption can be checked by plotting level-1 residuals against 
predicted values of the student-level outcome. The lack of relationship 
signals a proper model specification at the student-level and hence 
meeting this assumption. 

3. Level-2 errors  and  are bivariate normal, each with a 
mean of 0, variances of 

ju0 ju1

00τ  and 11τ , respectively, and a covariance 
of 01τ . This assumption can be checked by inspecting a Q-Q plot of the 
Mahalanobis distances. If the Q-Q plot looks approximately like a 45 
degree line, then the assumption of bivariate normality is tenable. 

4. The level-2 predictor is independent of level-2 errors. This 
assumption can be checked by plotting the empirical Bayes (EB) 
estimates of level-2 residuals against the predicted values of the 
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corresponding level-1 coefficient. The lack of relationships signals an 
adequate model specification at the class-level. 

5. Level-1 errors are independent of level-2 errors. This 
assumption can be checked by inspecting a scatter plot of the 
Mahalanobis distances for the level-2 residuals against the level-1 
residuals. A null correlation between the residuals from both levels 
provides evidence for the tenability of this assumption. 

6. Predictors at each level are not correlated with random parts 
at the other level. This assumption is met by having null relationships 
when (a) plotting the Mahalanobis distances for the level-2 residuals 
against the predicted values of level-1 model and (b) plotting the level-1 
residuals against the predicted values of each level-1 coefficient based 
on level-2 model. 

Modeling Level-1 Coefficients 

Each level-1 coefficient qjβ , where q = 0, 1, …, Q coefficients and  
j = 1, 2, …, J level-2 units; defined in level-1 model can be modeled at 
level-2 as one of three general forms (Raudenbush & Bryk, 2002): 

1. A fixed level-1 coefficient denoted by 0qqj γβ = . In this form, 
level-2 predictors are assumed to have no effect on qjβ . 

2. A random level-1 coefficient denoted either by 

qjqqj u+= 0γβ  or , where s = 1, 2, …,  
S level-2 predictors. In

qj

S

s
sjqsqqj uW ++= ∑

=1
0 γγβ

qjqqj u+= 0γβ , the level-1 coefficients are 
assumed to vary randomly over the population level-2 units. 
In

s
qj

S

sjqsqqj uW ++= ∑
=

0 γγβ
1

, the level-1 coefficients are assumed to 
have both a non-random variation explained by level-2 predictors and a 
random variation that remains unexplained. 

3. A non-randomly varying level-1 coefficient denoted 
by ∑+=

S

=
sjqsqqj W0 γγβ

s 1
. In this form, the level-1 coefficients do vary 

across the population of level-2 units as a function of level-2 predictors, 
but not as random. 
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The modeling of level-1 coefficients depends on the following 
indices (Raudenbush & Bryk, 2002): 

1. The point estimate of the variance for the level-1 
coefficient , in that, as qqqj τβ ˆ)ˆvar( = qqτ̂ becomes negligible, its 
corresponding level-1 coefficient may be specified as fixed. 

2. The  homogeneity test of H0: 
2χ 0=qqτ , in that, as the H0 

becomes tenable, its corresponding level-1 coefficient may be specified 
as fixed. 

3. The likelihood ratio test (i.e., deviance) of the variance-
covariance components, in that, two models with the same fixed parts 
(i.e., the gammas s'γ ) are compared. The first unrestricted model 
includes the variance components of the level-1 coefficient under 
question. The second restricted model constrains these components to 
zero. If there is no significant difference between the deviances of the 
two models, then the restricted model is preferred and the level-1 
coefficient of interest may be specified as fixed. 

4. The reliability of  because it indicates the potentially 
explainable variation in the estimated

qjβ̂
qjβ . A small amount of reliability 

(e.g., less than .05) suggests the need to specify the corresponding  
level-1 coefficient as fixed because there is not much variability in that 
coefficient to be explained by level-2 explanatory variables. 

5. The correlations among qjβ , in that, as the correlations are 
high (e.g., higher than .70), one or more of the level-1 coefficients may 
be specified as fixed. 

6. The theory underlying the research, in that, one or more of 
the above five statistical indices may indicate no random variation, but 
the research theory may suggest that the corresponding level-1 
coefficient varies across level-2 units as a function of level-2 variables. 
In this case, that coefficient may need to be specified as non-randomly 
varying. 
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Centering 

In regression, centering refers to subtracting the same value from each 
score of the independent variables (Kreft & Leeuw, 1998). There are 
three types of centering that can be employed in HLM: (a) a grand mean 
centering where the grand mean is subtracted from each individual’s 
score on the independent variable, (b) a group mean centering where the 
group mean is subtracted from each individual’s score on the 
independent variable, and (c) centering around a particular value 
specified by the researcher (Raudenbush & Bryk, 2002). 

Using the grand mean centering )( ..XX ij − for the student-level 
independent variable in our example, the intercept )( 0 jβ would become 
the adjusted mean on the achievement for class j. The grand mean 
centering is often used when the slopes are assumed to be invariant 
across the groups (Raudenbush, 1989). 

Using the group mean centering )( . jij XX − for the student-level 
independent variable in our example, the intercept )( 0 jβ  would 
become the expected achievement score for a student with an average 
SES of his or her class. The group mean centering is often used (a) to 
reduce the collinearity between level-1 predictors and level-2 predictors; 
(b) in contextual models where an independent variable (e.g., SES) is 
used twice, once as an individual student characteristic (e.g., student 
SES) and once as an aggregated class characteristic (e.g., class average 
for SES); and (c) when the slopes are assumed to vary randomly over 
the population of level-2 units (Raudenbush, 1989). 

The third type of centering is often used in growth curve models 
where the data consist of repeated measurements on individuals 
(Raudenbush & Bryk, 2002). For example, in a growth curve model 
examining change in self-efficacy over middle school grade levels 7, 8, 
and 9, the researcher may center the grade variable at the first testing 
grade which is the 7th grade. In this case, the intercept )( 0 jβ  would 
become the expected level of self-efficacy for a student in grade 7. 
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Sample Size 

There are two sorts of sample size that need to be considered in research 
designs involving a two-level hierarchically structured data. These are 
the sample size of level-1 units (e.g., students) within each level-2 unit 
(n) (e.g., classrooms) and the sample size of the level-2 units (J), with 

being the total sample size for the level-1 units (Snijders & 
Bosker, 1999). Although a number of software programs have been 
designed for calculations of power (e.g., Raudenbush & Liu, 2000; 
Snijders & Bosker, 1993), there are no specific guidelines regarding 
appropriate sample sizes for hierarchical linear models. Yet, some 
general recommendations have been discussed. For example, Mok (1995) 
indicated that less bias and more efficiency would be expected from 
research designs involving more classrooms and fewer students per 
classroom than designs involving fewer classrooms and more students 
per classroom. After reviewing some simulation studies investigating 
the power of HLM, Kreft and Leeuw (1998) indicated that 60 
classrooms with 25 students per classroom, bringing the total number to 
1,500, will produce a sufficiently high power. Bassiri (1988) as well as 
van der Leeden and Busing (1994) showed that at least 30 classrooms 
and 30 students within each classroom are needed to obtain a sufficient 
power (e.g., .90) to detect interactions between variables measured at 
different levels in hierarchically structured data (i.e., cross-level 
interactions). 

)( nJ ×

An Empirical Example: Effects of Assessment Practices on 
Students’ Performance Goals 

Alkharusi (2008) used HLM to examine the effects of classroom 
assessment practices on students’ performance goal orientation. The 
data were drawn from a sample of 1,636 students and their 
corresponding 83 teachers from public ninth grade science classes in 
Oman, with an average of 20 students per class. This paper presents 
some of the analysis and discusses the logic involved in each step. Four 
research questions were attempted to be answered: 
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1. Do ninth grade science classrooms in Oman vary in 
performance goals (GOAL)? 

2. What are some of the student characteristics that might have 
effects on GOAL? 

3. Do the effects of student characteristics on GOAL vary across 
classrooms? 

4. What are some of the classroom characteristics that might 
help explain the variability in the GOAL and in the effects of student 
characteristics on GOAL across classrooms? 

 
The purpose of these research questions was to construct a 

parsimonious model explaining student’s performance goal orientation 
as a function of student-level and class-level characteristics. The data 
pertaining to these questions were hierarchically structured, in that 
students were nested within classes. Therefore, HLM analysis was 
conducted. All variables, except for class’s gender which was a dummy 
variable (1 = female classes and –1 = male classes), were standardized 
to a mean of zero and a standard deviation of one. The student-level 
independent variables were group-mean centered. The variables were as 
follows: 

The Dependent Variable 

- Student’s performance goal orientation (GOAL) 

Independent Variables at the Student-level 

- Student’s self-efficacy (SEFC) 
- Student’s perceptions of the assessment environment as being 
learning-oriented (SLA) 
- Student’s perceptions of the assessment environment as being harsh-
oriented (SHA) 
- Student’s perceptions of the assessment environment as being public-
oriented (SPA) 
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Independent Variables at the Class-level 

- Class’s gender (GNDR) 
- Teacher’s years of teaching experience (TEXP) 
- Teacher’s frequent use of alternative assessments (ALTR) 
- Class’s average for self-efficacy (CEFC) 
- Class’s average for perceived learning assessment environment (CLA) 
- Class’s average for perceived harsh assessment environment (CHA) 
- Class’s average for perceived public assessment environment (CPA) 

A Fully Unconditional Model 

The analysis began with a fully unconditional model to examine how 
much variation in performance goal orientation lay within and between 
classrooms. Based on this model, a statistically significant variation was 
found among class means on performance goal orientation; 0571.ˆ00 =τ , 

, p < .001. The estimated within-class variance ( ) 
was .9436. Hence, the intraclass correlation was estimated as .0571, 
indicating that about 6% of the variance in performance goal orientation 
was between classrooms. The average reliability of the class means 
was .544, suggesting that the sample means were moderately reliable as 
indicators of their true class means. 

7803.179)82(2 =χ 2σ̂

A Random-coefficient Regression Model 

The next step in the analysis involved posing a random-coefficient 
regression model to examine the relationships of student-level 
independent variables to performance goal orientation, and whether 
these relationships varied significantly across classes. The initial model 
that was tested in this step was as follows. 

Student-level: 

ijjijjjijj

jijjjijjjij

rCPASPACHASHA

CLASLACEFCSEFCGOAL

+−+−

+−+−+=

)()(

)()()(

43

210

ββ

βββ
 

 



58 Hussain Alkharusi 

Class-level: 

jj u0000 += γβ  

jj u1101 += γβ  

jj u2202 += γβ  

jj u3303 += γβ  

jj u4404 += γβ  

Results of the initial random-coefficient regression model showed 
that, on average, both the effects of student perceived learning and 
perceived harsh assessment environments on performance goal 
orientation tended to be null within classrooms; 20γ̂  = .031,  
t(82) = 1.118, p = .267 and 30γ̂  = –.003, t(82) = –.102, p = .920; 
respectively. Also, each of these effects did not vary significantly across 
classrooms; 22τ̂  = .0136, (82) = 88.493, p = .292 and2χ 33τ̂  = .0059,  

(82) = 83.956, p = .419; respectively. These results suggested that 
the variables student perceived learning (SLA) and perceived harsh 
(SHA) assessment environments were candidates for deletion from the 
model. Therefore, an alternative reduced random-coefficient regression 
model was estimated in which the variables SLA and SHA were 
dropped from the student-level model. 

2χ

The deviance statistic for the restricted alternative model 
(4421.132 with 10 df) where the variables SLA and SHA were dropped 
from the student-level model was compared with the deviance statistic 
for the unrestricted initial model (4409.784 with 21 df) where the 
variables SLA and SHA were included in the student-level model. The 
difference between these two deviance statistics (11.348) was not 
statistically significant when compared against the  distribution with 
11 degrees of freedom. Therefore, the restricted alternative model 
appeared sufficient. 

2χ

Table 1 presents results of this reduced random-coefficient 
regression model of performance goal orientation. As shown in Table 1, 
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on average, student self-efficacy was positively related to performance 
goal orientation within classrooms; 274.ˆ10 =γ , t(82) = 9.291, p < .001; 
suggesting that a one standard deviation increase in student self-efficacy 
was on average associated with a .274 standard deviation increase in 
performance goal orientation within classrooms. This relationship varied 
significantly across classrooms; 0229.1̂1 =τ , ,  
p < .01. Also, on average, student perceived public assessment 
environment was positively related to performance goal orientation 
within classrooms; 

412.124)82(2 =χ

166.ˆ20 =γ , t(82) = 5.284, p < .001; indicating that a 
one standard deviation increase in student perceived public assessment 
environment was on average associated with a .166 standard deviation 
increase in performance goal orientation within classrooms. This 
relationship varied significantly across classrooms; , 

, p < .05. 
0277.ˆ22 =τ

714.110)82(2 =χ
After taking student self-efficacy and perceived public assessment 

environment into account, the estimated within-class variance ( ) was 
reduced from .9436 in the random-effects ANOVA model to .8052. 
Hence, student self-efficacy and perceived public assessment 
environment accounted for about 15% of the within-class variance in 
performance goal orientation. As also shown in Table 1, the correlation 
between class mean performance goal orientation and self-efficacy slope 
(  = –.589) suggested that classes with high levels of performance 
goal orientation tended to be less differentiating with regard to student 
self-efficacy than were classes with low levels of performance goal 
orientation. The correlation between the random effects (  = –.527) 
suggested that there was sufficient independent variation to treat each of 
them as separate class effects. The estimates of the average class 
performance goal orientation as well as of the differentiating effects of 
self-efficacy and perceived public assessment environment were 
moderately reliable;  = .611, .302, and .323 where q = 0, 1, and 
2, respectively; suggesting sufficient observed variation to be explained 
in the intercepts ( ) and slopes (  where q = 1 and 2) using class 
characteristics. 

2σ̂

01p̂

12p̂

)ˆ(ˆ qjβλ

j0β̂ qjβ̂
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Having estimated the variability in the class performance goal 
orientation means (i.e., intercepts), student self-efficacy effects (i.e., 
self-efficacy slopes), and student perceived assessment environment 
effects (i.e., perceived assessment environment slopes), the analysis 
proceeded with intercepts-and-slopes-as-outcomes regression models to 
explain the variability in these intercepts and slopes using class-level 
variables. Following Raudenbush and Bryk’s (2002, p. 267) suggestion, 
the class-level variables were divided into two sets. The first set 
represented the contextual-effects of self-efficacy and perceived 
assessment environment along with their differential contextual effects  

Table 1: Reduced Random-Coefficient Regression Model of Performance 

Goal Orientation 

Fixed effect Coefficient SE t-value 

Class GOAL mean, 00γ   .000 .035  –.005 

SEFC slope mean, 10γ   .274 .029  9.291***

SPA slope, 20γ   .166 .031  5.284***

Random effect Variance component df 2χ  

GOAL mean,  ju0  .0644 82  210.665***

SEFC slope,  ju1  .0229 82  124.412** 

SPA slope,  ju2  .0277 82  110.714* 

Level-1 effect,  ijr  .8052   

Correlations among class 

effects 
j0β  j1β  j2β  

GOAL mean, j0β  –    

SEFC slope, j1β  –.589 –   

SPA slope, j2β  –.091 –.527 –  

Reliability of OLS regression-coefficient estimates 

GOAL mean, j0β  .611   

SEFC slope, j1β  .302   

SPA slope, j2β  .323   

*p < .05; **p < .01; ***p < .001 
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by class gender. The second set represented the joint effects of class 
gender, teacher’s teaching experience, and teacher’s assessment 
practices. Then, two submodels of the intercepts-and-slopes-as-
outcomes regression model were fitted, one for each of the two sets of 
the class-level variables. For the sake of illustration, only the results 
pertaining to the first submodel are presented below. 

Contextual-effects model of self-efficacy and perceived 
assessment environment along with their differential contextual effects 
by class gender. Within HLM, a contextual effect is represented by 
including the class aggregate of a student-level variable in the between-
class model for that differentiating effect (Raudenbush & Bryk, 2002). 
Differential contextual effects by class gender are represented by the 
inclusion of a class aggregate variable-by-class gender interaction term 
in the between-class model. Therefore, this submodel included class 
gender (GNDR), class average for self-efficacy (CEFC), and class 
average for perceived public assessment environment (CPA) as well as 
the interaction terms of (GNDR ×  CEFC) and (GNDR ×  CPA). The 
initial model that was tested in this step of the analysis was as follows. 

Student-level: 

ijjijjjijjjij rCPASPACEFCSEFCGOAL +−+−+= )()()( 210 βββ  

Class-level: 

jjj

jjjj

uCPAGNDRCEFCGNDR

CPACEFCGNDR

00504

030201000

)()(

)()()(

+×+×

++++=

γγ

γγγγβ
 

jjjj uCEFCGNDRCEFCGNDR 1131211101 )()()( +×+++= γγγγβ  

jjjjj uCPAGNDRCPAGNDR 2232221202 )()()( +×+++= γγγγβ  

 
Some class-level variables were deleted because they had t-ratios 

near or less than one, and the model was re-estimated. Table 2 presents 
results of the reduced contextual effects model of self-efficacy and 
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perceived assessment environment on performance goal orientation. 
Using the random-coefficient regression model presented in Table 1 as 
the base model, approximately 30% of the variance among classrooms 
in average performance goal orientation was explained by class gender, 
class average self-efficacy, and class average perceived public 
assessment environment. However, there was no evidence of gender, 
context, or gender-by-context effects for the relationships of student 
self-efficacy and perceived public assessment environment to 
performance goal orientation. 

 

Table 2: Reduced Contextual Effects Model of Self-efficacy and Perceived 

Assessment Environment on Performance Goal Orientation 

Fixed effect Coefficient SE t-value 

Class GOAL mean, j0β     

Base, 00γ   –.006 .032  –.180 

GNDR, 01γ   .055 .034  1.633 

CEFC, 02γ   .115 .032  3.623** 

CPA, 03γ   .067 .030  2.273* 

SEFC slope, j1β     

Base, 10γ   .278 .030  9.310*** 

SPA slope, j2β     

Base, 20γ   .167 .031  5.357*** 

Random effect Variance 

component 

df 2χ  

GOAL mean,  ju0  .0450 79  166.075*** 

SEFC slope,  ju1  .0244 82  124.396** 

SPA slope,  ju2  .0270 82  110.832* 

Level-1 effect,  ijr  .8049   

*p < .05; **p < .01; ***p < .001 
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A Final Explanatory Model of Performance Goal Orientation 

The final step in the analysis involved combining together statistically 
significant class-level variables detected in the early steps of the analysis 
to produce a parsimonious overall intercepts-and-slopes-as-outcomes 
regression model explaining the variability in (a) class mean 
performance goal orientation, (b) relationship between student self-
efficacy and performance goal orientation, and (c) relationship between 
student perceived assessment environment and performance goal 
orientation. Based on the early steps of the analysis, the initial model 
that was tested in this step of the analysis was as follows: 

 

Student-level: 

ijjijjjijjjij rCPASPACEFCSEFCGOAL +−+−+= )()()( 210 βββ  

Class-level: 

jjjjj uCPACEFCGNDR 0030201000 )()()( ++++= γγγγβ  

jjj

jjjjj

uALTRTEXPGNDRALTRGNDR

TEXPGNDRTEXPALTRGNDR

11615

14131211101

)()(

)()()()(

+××+×

+×++++=

γγ

γγγγγβ  

jjjj

jjjjj

uALTRTEXPGNDRALTRTEXPALTRGNDR

TEXPGNDRTEXPALTRGNDR

2272625

24232221202

)()()(

)()()()(

+××+×+×

+×++++=

γγγ

γγγγγβ

 

Variables that were deleted in the early steps of the analysis were 
re-considered. The empirical Bayes residuals from the initial composite 
model were regressed on the excluded variables. On the basis of this 
residual analysis, one variable was added to the model as follows. 

Student-level: 

ijjijjjijjjij rCPASPACEFCSEFCGOAL +−+−+= )()()( 210 βββ  

 



64 Hussain Alkharusi 

Class-level: 

jjjjjj uCPACEFCALTRGNDR 004030201000 )()()()( +++++= γγγγγβ  

jjj

jjjjj

uALTRTEXPGNDRALTRGNDR

TEXPGNDRTEXPALTRGNDR

11615

14131211101

)()(

)()()()(

+××+×

+×++++=

γγ

γγγγγβ

 

jjjj

jjjjj

uALTRTEXPGNDRALTRTEXPALTRGNDR

TEXPGNDRTEXPALTRGNDR

2272625

24232221202

)()()(

)()()()(

+××+×+×

+×++++=

γγγ

γγγγγβ

 

However, the data pertaining to this composite model displayed a 
heterogeneous residual variance at the student-level; , 
p < .001. Further inspection of the data showed neither extreme 
observations than normally expected nor units having bad data. Further 
inspection of the model revealed that the effects of student-level 
independent variables were appropriately specified. As such, the reason 
for heterogeneity of student-level residual variances in this data set 
might be the omission of other important student-level independent 
variables from the model, and thus this might need to be considered in 
future research. Although estimation of the fixed effects and their 
standard errors is robust to violations of the homogeneity assumption 
about student-level residual variance (Raudenbush & Bryk, 2002), the 
final model was estimated both with and without the heterogeneous 
variance specification at the student-level. The student-level variance 
was modeled as a function of student perceived public assessment 
environment as follows: 

766.130)82(2 =χ

ijij SPA)()ln( 10
2 αασ +=  

Results indicated that the model with the heterogeneous variance 
specification at the student-level appeared to fit the data better than the 
model without the heterogeneous variance specification at the student-
level; , p < .001. After considering the heterogeneity of 
student-level variance, a number of issues were found in the model. First, 
the correlation between self-efficacy slope (

674.24)1(2 =χ

j1β ) and perceived public 
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assessment environment slope ( j2β ) was –.949, suggesting that these 
two random effects were carrying the same variation across the 
classrooms. This issue warrants a reduction of the model by specifying 
one of these effects as fixed or non-randomly varying. Second, many of 
the class-level variables became non-statistically significant thereby 
making them candidates for deletion from the model. Third, the effect of 
perceived public assessment environment on performance goal 
orientation did not vary significantly across classrooms; 0117.ˆ22 =τ , 

, p = .171; suggesting that this effect may need to be 
specified as fixed or non-randomly varying. 

517.86)75(2 =χ

Therefore, the deviance statistic for the unrestricted model 
(4352.973 with 28 df) where the perceived public assessment 
environment slope ( j2β ) was specified as having both random and non-
random components was compared with the deviance statistic for a 
reduced model (4367.170 with 19 df) where j2β  was specified as 
varying strictly as a function of class gender with no additional random 
component. The reduction in deviance (14.197) was not statistically 
significant when compared against the  distribution with nine 
degrees of freedom. Therefore, the reduced model appeared sufficient. 
Table 3 presents results of this final reduced composite model of 
performance goal orientation. 

2χ

With regard to class mean performance goal orientation, as shown 
in Table 3, holding other factors constant, female classrooms had 
significantly higher average performance goal orientation than did male 
classrooms; 01γ̂  = .069, t(78) = 2.049, p < .05. Also, holding other 
factors constant, there was a trend for classes with a high frequent use of 
alternative assessments to have a smaller average performance goal 
orientation than did classes with a low frequent use of alternative 
assessments; 02γ̂  = –.068, t(78) = –1.895, p = .061. Further, holding 
other factors constant, the average self-efficacy of students was 
positively related to class mean performance goal orientation;  

03γ̂  = .114, t(78) = 3.914, p < .001. Moreover, holding other factors 
constant, the average perceived public assessment environment was 
positively related to class mean performance goal orientation;  
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04γ̂  = .075, t(78) = 2.697, p < .01. Using the random coefficient 
regression model presented in Table 1 as the base model, approximately 
42% of the variance among classrooms in average performance goal 
orientation was explained once class gender, teacher’s frequent use of 
alternative assessments, class average self-efficacy, and class average 
perceived public assessment environment were taken into account. 

With regard to self-efficacy slope, as shown in Table 3, holding 
other factors constant, on average, student self-efficacy was positively 
related to performance goal orientation within classrooms; 382.ˆ10 =γ , 
t(76) = 8.476, p < .001. Also, holding other factors constant, the 
differentiating effect of self-efficacy within a classroom depended 
jointly on class gender, teacher’s teaching experience, and teacher’s 
frequent use of alternative assessments; 715.ˆ16 −=γ , t(76) = –2.502,  
p < .05. This can be seen by computing the differentiating effect of  
self-efficacy separately for male and female classrooms having high 
(TEXP = 1) and low (TEXP = –1) experienced teachers using alternative 
assessments more (ALTR = 1) or less (ALTR = –1) frequently based on 
the following equation: 

jj

jjjj

ALTRTEXPGNDRALTRGNDR

TEXPGNDRTEXPALTRGNDR

)(ˆ)(ˆ
)(ˆ)(ˆ)(ˆ)(ˆˆ

1615

1413121110

××+×

+×++++

γγ

γγγγγ  

Accordingly, for male classrooms using alternative assessments 
less frequently, classes having a high experienced teacher were less 
differentiating with regard to student self-efficacy than were classes 
having a low experienced teacher. The opposite was true in male 
classrooms using alternative assessments more frequently. For female 
classrooms using alternative assessments less frequently, classes having 
a high experienced teacher were more differentiating with regard to 
student self-efficacy than were classes having a low experienced teacher. 
The opposite was true in female classrooms using alternative 
assessments more frequently. 

Using the random-coefficient regression model presented in Table 
1, approximately 32% of the variance among classrooms in self-efficacy 
differentiating effect was explained by class gender, frequent use of 
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alternative assessments, teaching experience, interaction of class gender-
by-teaching experience, interaction of class gender-by-frequent use of 
alternative assessments, and interaction of class gender-by-teaching 
experience-by-frequent use of alternative assessments. As also shown in 
Table 3, performance goal orientation levels of students with a high 
perceived public assessment environment were higher; 144.ˆ20 =γ , 
t(1622) = 5.079, p < .001; and less variable; 196.ˆ1 −=α , z = –4.789,  
p < .001; than those for students with low levels of perceived public 
assessment environment. Also, the positive relationship between 
perceived public assessment environment and performance goal 
orientation tended to be stronger in female classrooms than in male 
classrooms; 064.ˆ21 =γ , t(1622) = 2.269, p < .05. 

Conclusion 

Given the research emphasis in the impact of educational assessment 
practices on student achievement-related outcomes, educational 
assessment researchers need to take advantage of the HLM as an 
appropriate analytic method for testing a variety of hypotheses about 
hierarchically structured data, as in the case of students nested within 
classrooms. Although the sample size requirements for HLM may not be 
feasible, it is nevertheless a versatile analytic approach to be utilized in 
educational assessment research to advance the research agenda in this 
area, in the sense that it does not only enable us to test hypotheses about 
effects occurring at each level of the hierarchy, but also estimates cross-
level interaction effects that have received little empirical research 
attention. 
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Table 3: Final Fitted Composite Model of Performance Goal Orientation 

with Heterogeneous Level-1 Variance 

Fixed effect Coefficient SE t-value 

Class GOAL mean, j0β      

Base, 00γ   –.006 .031  –.190 

GNDR, 01γ   .069 .034  2.049* 

ALTR, 02γ   –.068 .036  –1.895 

CEFC, 03γ   .114 .029  3.914*** 

CPA, 04γ   .075 .028  2.697** 

SEFC slope, j1β     

Base, 10γ   .382 .045  8.476*** 

GNDR, 11γ   –.902 .321  –2.806** 

ALTR, 12γ   .005 .026  .203 

TEXP, 13γ   .008 .021  .405 

GNDR ×  TEXP, 14γ   .617 .263  2.342* 

GNDR ×  ALTR, 15γ   .955 .341  2.800** 

GNDR ×  TEXP ×  ALTR, 

16γ  

 –.715 .286  –2.502* 

SPA slope, j2β     

Base, 20γ   .144 .028  5.079*** 

GNDR, 21γ   .064 .028  2.269* 

Random effect Variance component df 2χ  

GOAL mean,  ju0  .0372 78 160.706***

SEFC slope,  ju1  .0155 76 117.481** 

Model for level-1 variance    

Parameter Coefficient SE z-value 

Intercept, 0α   .213 .037  5.802*** 

SPA, 1α   –.196 .041  –4.789*** 

*p < .05; **p < .01; ***p < .001 
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